Silicon Etching in Rapid Thermal Chemical Vapor Deposition of Tisi2

Author:

Ren Xiaowei,Gladden Dannellia B.,Öztürk Mehmet C.,Batchelor A. Dale

Abstract

AbstractDownscaling of microelectronics devices into the deep submicron regime requires ultrashallow junctions with reliable, low-resistivity contacts. The conventional self-aligned TiSi2 technology exhibits a serious limitation in forming contacts to ultra-shallow junctions due to silicon substrate consumption. Selective chemical vapor deposition of TiSi2 is being investigated because of its potential for overcoming this difficulty. In this process Si and Ti are supplied from the gas phase. The standard source gas for Ti has been TiCl4 while several gases including SiH4, Si2H6 and SiH2Cl2 are available for Si. The reports on this process indicate that optimized process conditions can deliver TiSi2 films without substrate consumption. Although this promise is significant, the deposition has a complicated chemistry involving processes such as silicon etching, silicon consumption or silicon pedestal deposition taking place along with TiSi2 deposition. Although, suppression of Si-substrate etching by excess H2 has been reported previously, a broad quantitative analysis has been lacking up until this reporting. In this work, we have examined silicon etching trends as a function of temperature for different H2:TiCl4 flow ratios using thermodynamic equilibrium calculations. We have also performed experiments in a lamp heated rapid thermal chemical vapor deposition reactor to study substrate etching over the temperature range of 600°C to 800°C and for H2 flows from 0 to 1000 sccm. A silicon conversion efficiency is defined as a measure of the amount of Si converted to TiSi2 relative to total Si used from the substrate and it is evaluated via both thermodynamic calculations and experiments with good agreement between the two. Our calculations suggest that at high temperatures, etching occurs mainly via formation of SiCl2. Addition of H2 into the reaction chemistry encourages formation of HCl reducing the amount of Cl available for SiCl2 formation responsible for substrate etching. Our results show that by optimizing the H2 flow rate and the process temperature silicon substrate etching can be effectively suppressed.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3