Chemical Kinetics Models for the Fatigue Behavior of Fused Silica Optical Fiber

Author:

Matthewson M. J.

Abstract

AbstractThere have been numerous studies of the fatigue and strength behavior of fused silica optical fibers. However, no coherent model has emerged that self-consistently describes the simultaneous effects of stress, temperature and activity of the corroding species (e.g. water). A power law degradation kinetics model (relating the crack growth rate to the applied stress intensity factor, KI) is widely used although various exponential forms based on chemical rate theory have also been proposed. The dependence of fatigue on parameters such as humidity, pH and temperature, has usually been treated in an empirical manner. Sometimes it is even ignored -for example, the service environment is often assumed to be the same as the proof test environment when making lifetime predictions, thus avoiding the need for understanding the humidity dependence; this assumption is often unjustified. This paper reviews the dependence of fatigue on environmental factors and highlights some of the inconsistencies in published data. It is then attempted to present a coherent kinetics model that simultaneously accounts for stress temperature, humidity, etc. Several possible forms of the model are compared to a range of experimental data of several different types. The comparison is made using fitting techniques that account for correlation between fit parameters. It is found that a simple exponential form of the degradation kinetics model gives the best overall description of the temperature, humidity and pH effects on static and dynamic fatigue. It should be noted that the exponential form predicts shorter lifetimes than the ubiquitous power law model. Therefore, under some circumstances, the predictions of “worst case” models based on power law kinetics are unduly optimistic.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference31 articles.

1. 31. Kurkjian C. R. , Matthewson M. J. and Chaudhri M. M. (in this volume).

2. Static Fatigue of Optical Fibers in Bending

3. Statistical properties of type I intermittency

4. 24. Matthewson M. J. (unpublished work).

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3