Author:
Pham D. K.,Neall F. B.,Myhra S.,Smart R.ST.C,Turner P. S.
Abstract
ABSTRACTThe perovskite CaTiO3 is one of the major phases of the Synroc titanate mineral assemblage. Its chemical durability in an aqueous environment, which is relevant to the Synroc concept, has been investigated by solution analysis, surface analysis and electron microscopy. In general it has been found that dissolution due to base catalyzed hydrolysis is the most significant mechanism of attack; the results suggest that an ion exchange mechanism is confined to the first monolayer. Below 90°C the extent of attack, and release of Ca into solution, is limited by the formation of a titanaceous amorphous layer (” 100A thickness) which imposes a reaction constraint at the film-solid interface. Dissolution may also be constrained by the pH and Ca2+concentration in the bulk liquid. Above 90°C dissolution is relatively less constrained due to instability of the amorphous layer which is replaced by nucleation and epitaxial growth of TiO2 on the dissolving substrate. Thermodynamic stability of CaTiO3 for T< 90°C can easily be engineered into the waste repository, while hydrothermal stability (T > 90°C) is more difficult to achieve.
Publisher
Springer Science and Business Media LLC
Reference16 articles.
1. Thermodynamic stability and kinetics of perovskite dissolution
2. 7. Myhra S. , Smart R. St. C. Turner P.S. and Neall F.B. , Final Report NERDDC Project No. 673, Aust. Govt. Publishing Office (1986).
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献