U - Th - REE Mobility and Diffusion in Granitic Environments During Alteration of Accessory Minerals and U - Ores: A Geochemical Analogue to Radioactive Waste Disposal

Author:

Cathelineau M.,Vergneaud M.

Abstract

ABSTRACTU, Th and REE concentrations and distributions have been studied in granitic rocks, using a multidisciplinary approach involving fission-track micromapping of cracks in oriented samples, together with mineralogical and geochemical studies of the different U-Th-REE bearing phases. The behaviour of U, Th and Nd, considered as chemical analogue elements of the radiotoxic nuclides, was investigated either in the vicinity of microsites (accessory mineral environment) or along plurimetric sections around U-ore bodies. The different granite minerals, especially the accessory minerals (uraninite, monazite, thorite, apatite, xenotime), as well as U-ores, present different initial concentrations of U, Th and REE. Limitations to the analogy between these U-Th-REE concentrations and the radwastes is discussed as a function of their mineralogical features, chemical composition, size and solubilities. These primary concentrations present different behaviour when subjected to hydrothermal alteration, such as propylitization, phyllite type alteration, or clay alteration. Results show that in reduced media, in the temperature range 80–200°C, the rate of mobilization of U, Th, REE is relatively moderate. However, fluids enriched in fluorides, phosphates or carbonates may significantly solubilize and transport U and REE under specific conditions. In addition, the degree of opening of the microcracks and faults, as well as the oxidation-reduction processes, are critical parameters for the efficiency of the granitic geological barrier.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3