Author:
D’Incau M.,Leoni M.,Scardi P.
Abstract
Iron-molybdenum powders ground in a planetary ball mill under different operating conditions were studied by x-ray diffraction line profile analysis using a recently developed whole powder pattern modeling approach. The evolution of the microstructure, expressed in terms of size distribution of coherent scattering domains, average dislocation density, and edge/screw character, shows the importance of the main process parameters: the ratio between jar and main disk rotation speeds, and ball milling time. A characteristic three-stage process is observed, with work hardening followed by particle flattening/bending before nanocrystalline grains form by a fragmentation process triggered by localized deformation. The relationship between lattice defect density and domain size suggests a progressive transition between statistically stored to geometrically necessary dislocations, with the latter mostly present as excess dislocations at the nanodomain boundary.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献