Author:
Liu Z.W.,Yeo S.W.,Ong C.K.
Abstract
N-doped and (Al,N)-codoped ZnO films were synthesized by oxidative annealing of (Zn + Zn3N2) films, which were fabricated by reactive magnetron sputtering. Both n- and p-type conductions were obtained in these ZnO:N and ZnO:AlN films. Optimal oxidation treatments for achieving p-type ZnO are annealing at 400–600 °C for 10–60 min, depending on the film thickness and morphology. The electric properties were found to be very sensitive to the annealing conditions and film structure. As-deposited (Zn + Zn3N2) films with and without Al addition had carrier concentrations of 1021–1022 cm−3. After conversion to ZnO, the n-type films had a carrier concentrations up to 1019 cm−3, whereas the p-type ZnO:N films had hole concentrations of 1014–1016 cm−3. (Al,N)-codoping increased the hole concentration of p-type film to 1018 cm−3 despite a decrease in Hall mobility. The photoluminescence properties of the p-type ZnO films were also investigated. The synthesis of p-type ZnO:AlN by oxidative annealing is believed to provide an alternative approach to realize p-type conduction in codoped ZnO film by using N2 as the N source.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献