Microstructural evolution and interfacial reactions of fluxless-bonded Au-20Sn/Cu solder joint during reflow and aging

Author:

Yoon Jeong-Won,Chun Hyun-Suk,Lee Hoo-Jeong,Jung Seung-Boo

Abstract

The microstructural evolution and interfacial reactions of fluxless-bonded, Au-20wt%Sn/Cu solder joint were investigated during reflow and aging. After reflowing at 310 °C, only one thick and irregularly shaped ζ(Cu) layer was formed at the interface. After the prolonged reflow reaction, the AuCu layer was formed between the ζ(Cu) layer and the Cu substrate. During reflowing, the Cu substrate reacted primarily with the ζ-phase in the solder matrix. The solid-state interfacial reaction was much faster at 250 °C than at 150 °C. After aging at 250 °C for 100 h, thick ζ(Cu), AuCu and AuCu3 IMC layers were formed at the interface. The formation of the AuCu3 intermetallic compound (IMC) was caused by Cu enrichment at the AuCu/Cu layer interface. After aging for 500 h, cracks were observed inside the interfacial AuCu layer. The study results clearly demonstrate the need for an alternative surface finish on Cu, to ensure the high temperature reliability of the Au-20Sn/Cu solder joint.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3