Fundamental studies of the influence of boron on the graphite-oxygen reaction using in situ electron microscopy techniques

Author:

Rodriguez N.M.,Baker R.T.K.

Abstract

Controlled atmosphere electron microscopy coupled with in situ electron diffraction has been used to follow the manner by which the addition of boron oxide influences the graphite-oxygen reaction. Continuous observations of the process show that at about 450 °C the boron oxide undergoes a strong interaction with both the graphite edge and the basal plane regions, and this results in a spreading of the oxide to form a uniform thin adherent film over the entire substrate. The coated graphite specimens appear to be impervious to attack by oxygen at temperatures below 815 °C. Above this temperature, however, there is a weakening of the additive-graphite interaction with the “armchair” {11$\overline 1$0} faces, and these regions then become vulnerable to attack by oxygen. At the same time very shallow pits are observed to develop in the basal plane, and this action coincides with the appearance of boron carbide species in the electron diffraction pattern. In a complementary series of experiments, it is found that boron carbide is an extremely active catalyst for the graphite-oxygen reaction even at temperatures as low as 100 °C. The impact of these low pressure studies on the behavior of carbon structures used in aerospace applications is discussed.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3