Author:
Smith Richard W.,Ying Feng,Srolovitz David J.
Abstract
AbstractTwo dimensional non-equilibrium molecular dynamics simulations are performed to study microstructural evolution during the growth of polycrystalline thin films. Attention is focused on the interaction between grain boundaries and voids which form during deposition, and on the development of a preferred, crystallographic texture during film growth. In an intermediate temperature regime, where the film is cold enough to allow void formation but hot enough to allow grain boundary motion, boundaries move such as to attach themselves to voids as the voids form from depressions in the film surface. At lower temperatures, the boundaries have insufficient mobility to migrate toward the voids. At higher temperatures, films grow in the absence of voids. At low deposition kinetic energies, there is no tendency for polycrystalline films to develop a preferred texture. At moderate or high energy deposition kinetic energies, however, as in the case of magnetron sputtering, significant texture formation can result due to preferential (re)sputtering of atoms from the surface of grains with low-binding-energy exposed surfaces. Such preferential (re)sputtering provides a height advantage for grains possessing high-binding-energy exposed surfaces. The taller grains are seen to widen as deposition continues, resulting in the development of a preferred crystallographic orientation.
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献