Mechanism for the magnetoresistance of Pure Bulk Ferromagnets and Composite Thin Film Structures

Author:

Stearns Mary Beth

Abstract

ABSTRACTA unified explanation is given of the long-standing question of the origin of the low-field magnetoresistance, MR, behavior in pure ferromagnetics and the large magnetoresistance effects seen in magnetic layered and granular structures. It is shown that the main contributions to these effects are due to the scattering that occurs at the magnetic boundaries between non-aligned magnetic regions. This scattering occurs because the predominant conduction electrons in 3d ferromagnetics are the highly polarized itinerant d electrons. As a result of this polarization the Majority-band d electrons are strongly reflected at an antiparallel magnetic boundary due to a lack of available states for occupancy. The traversing electrons are further scattered as they cross the boundary due to a discontinuity in the potential caused by the interchange of their kinetic and exchange energies at the boundary. Expressions for the magnetoresistance due to these scattering mechanisms are derived and shown to describe very well the wide variety of magnetoresistance values and other features found in the literature for both pure Fe and nano-structures of Fe or Co with non-Magnetic Materials. The MR Magnitude is seen to vary inversely with the domain size. Thus the domain size and sample purity are seen to be the main factors that determine the magnitude of the MR effect in pure ferromagnets. The large MR values seen in layered and granular magnetic structures arise from the small effective domain size attainable in these structures. This is achieved by introducing a non-Magnetic Material into these structures which allows the effective domain size to be decreased from the micron range of the pure ferromagnetic elements into the nanometer range.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3