Tunable Infrared Detection Using Epitaxial Silicide/Silicon Heterostructures

Author:

Sagnes I.,Campidelli Y.,Chevalier F.,Bodnar S.,Renard C.,Badoz P. A.

Abstract

ABSTRACTA new silicide/silicon IR detector is presented which has the potential for multicolour detection due to the tunability of its photoresponse. This tunable internal photoemission sensor (TIPS) fabricated using the Ir/Si/ErSi2 system, consists of two back–to–back Schottky diodes separated by a thin undoped Si layer. The two metals have different Schottky barrier heights so that the depleted Si forms an asymmetrical potential barrier to the carriers photocreated in each metallic film. The photocurrent flowing between the two metallic films is therefore strongly dependent on the shape and height of the effective potential barrier that can be varied by a bias applied between the two metallic electrodes. The Ir/Si/ErSi2 photoresponse and cut–off wavelength are indeed dramatically modulated when a small bias (less than 1 volt) is applied between the Ir and ErSi2 electrodes. The quantum efficiencies, measured in the 1 to 3 μm range, are comparable to the best obtained in Schottky and SiGe/Si internal photoemission detectors. A quantitative model derived from the Fowler formalism (by taking into account (i) the hole and electron photocurrents and (ii) the wavelength dependence of the photon absorption in each metallic film) fits all the experimental data over the whole range of photon energy and applied biases. The effective barrier heights thus measured as a function of applied bias are in good agreement with those deduced from activation energy analysis of the TIPS dark current and show that the cut–off wavelength can be modulated from 2.5 μm to more than 6 μm. Finally, electrical and photoresponse measurements on Cr/Si/SiGe(p+) structures (using the same TIPS mode of operation) also demonstrate the photoresponse tunability, thus combining the TIPS tunability with the extended wavelength range of operation (up to 10 μm) of SiGe/Si detectors.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3