Self-Aligned Formation of C54 Titanium Germanosilicide Using Rapid Thermal Processing and Application to Raised, Ultrashallow Junctions

Author:

Ashburn Stanton P.,Grider Douglas T.,ÖztÜrk Mehmet C.,Harris Gari,Maher Dennis M.

Abstract

ABSTRACTIn this paper we present results on solid state reactions between Ti and Si1−xGex alloys selectively deposited onto Si (100) substrates using rapid thermal annealing (RTA) for contact applications in novel device structures. Germanium concentrations of 0%, 30%, 50%, and 100% within the reacting Si1−xGex alloy are investigated. The Si1−xGex alloys (approximately 2500 ° thick) are deposited using rapid thermal chemical vapor deposition (RTCVD). Titanium is then deposited by evaporation. Sheet resistance measurements as a function of RTA temperature (10 second anneals) provide indications of various phases that occur during the reactions through the formation of constant sheet resistance plateaus. The RTA temperature required for the formation of a minimum resistivity phase is observed to increase for increasing Ge concentrations within the reacting Si1−xGex alloy. Using x-ray diffraction we have determined that for the reactions of Ti with Si the C49 TiSi2 metastable phase forms prior to the minimum resistivity C54 TiSi2 phase. For the reactions between Ti and Ge a minimum resistivity TiGe2 phase also with the C54 structure forms, however, this phase is preceeded not by a C49 TiGe2 structure, but by a Ti6Ge5 phase. The minimum resistivity phases for Ti reactions with 30% and 50% Ge Si1−xGex, alloy reactions also have a C54 structure with unit cell dimensions varying from that of TiSi2) to TiGe2 as the Ge concentration is increased. The grain structures for the reactions are investigated by cross-sectional transmission electron microscopy (XTEM). As the Ge concentration within the reacting alloy decreases the lateral grain size for the C54 structures increases. A self-aligned germanosilicide process is identified and used to fabricate raised, ultrashallow junctions with Ti(SiGe)2 (germanosilicide) contacts. Forward and reverse bias characterization of the junctions indicate that leakage current induced during silicidation can be eliminated using raised junctions with germanosilicide contacts.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference12 articles.

1. A self-aligned elevated source/drain MOSFET

2. 9. Grider D. T. , Ph.D., North Carolina State University, (1993)

3. 3. hove L. Van den , Ph.D., Kathulieke Universiteit, Leuven, Belgium, (1988)

4. Formation of silicided, ultra-shallow junctions using low thermal budget processing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3