Author:
Shah A.,Dutta J.,Wyrsch N.,Prasad K.,Curtins H.,Finger F.,Howling A.,Hollenstein Ch.
Abstract
ABSTRACTThe use of plasma excitation frequencies f in the VHF band (30–300 MHz), and particularly of f=70 MHz, for the high-rate deposition of amorphous hydrogenated silicon (a-Si:H) is described. Deposition rates, using monosilane (SiH4) as source gas, are thereby increased roughly five fold to over 10 Å/s as compared with the conventional case of RF plasma enhanced chemical vapour deposition with f=13.56 MHz. This may possibly be attributed to an enhancement in the high-energy tail of the electron energy distribution function (EEDF) of the plasma. Thereby, no noticeable deterioration in film properties is found.Characteristics of VHF-deposited a-Si:H films are extensively reported, including properties like microstructure, hydrogen effusion behaviour and its low internal mechanical stress. High quality hydrogenated microcrystalline silicon (μc-Si:H) can be deposited at low substrate temperature and low plasma power densities thanks to VHF glow discharge. This can be linked to a reduction in sheath potential and to the energy of the ions arriving at the growing surface. Thereafter, use of VHF plasma in applications such as 100 μm thick a-Si:H layer for particle detectors and powder-free deposition of solar cells with efficiencies over 8% are reported.
Publisher
Springer Science and Business Media LLC
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献