Development of Nondestructive Method for Prediction of Crack Instability

Author:

Schroeder J. L.,Eylon D.,Shell E. B.,Matikas T. E.

Abstract

ABSTRACTA method to characterize the deformation zone at a crack tip and predict upcoming fracture under load using white light interference microscopy was developed and studied. Cracks were initiated in notched Ti-6A1-4V specimens through fatigue loading. Following crack initiation, specimens were subjected to static loading during in-situ observation of the deformation area ahead of the crack. Nondestructive in-situ observations were performed using white light interference microscopy. Profilometer measurements quantified the area, volume, and shape of the deformation ahead of the crack front. Results showed an exponential relationship between the area and volume of deformation and the stress intensity factor of the cracked alloy. These findings also indicate that it is possible to determine a critical rate of change in deformation versus the stress intensity factor that can predict oncoming catastrophic failure. In addition, crack front deformation zones were measured as a function of time under sustained load, and crack tip deformation zone enlargement over time was observed.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3