Texture and Phases in Oxide Films on Zr-Nb Alloys

Author:

Lin Y. P.,Woo O. T.,Lockwood D. J.

Abstract

ABSTRACTOxide films, 0.2-2.0 μm in thickness on Zr-2.5Nb and 11 μm thick on Zr-20Nb alloys, formed in steam at 673 K, have been examined using TEM, XRD and Raman spectroscopy. Columnar grains of mostly monoclinic Zr02 in oxide films on Zr-2.5Nb exhibit a dual texture: a fibre mode with an axis close to the 102m pole and a [001]m growth mode with an orientation relationship [100]m // [4510]α and (010)m // (0001)α with the α-Zr metal. In both modes, “tetragonal” (and/or cubic) ZrO2 was present. Raman spectroscopy differentiated two non-cubic “tetragonal” forms of ZrOz within the [001]m growth texture. In thin oxides (0.5 μm or less), this corresponds to the tetragonal ZrO2 observed in ceramic zirconia and is characterised by a Raman band near 260 cm−1. The 278 and related 438 cm−1 Raman bands observed here in some oxide films (and in other Zr corrosion oxides) are attributed to a separate, non-cubic phase structurally related to the tetragonal ZrO2. The intensities of the 278 and 438 cm−1 bands are dependent not only on the amount of this modified-tetragonal phase but also on the oxide texture (related to the metal texture) and the beam orientation. The lack of Raman response from the “tetragonal” ZrO2 within the fibre mode of texture indicates either a low volume fraction or a cubic-like structure. For oxide on Zr-20Nb, XRD and Raman spectroscopy show a mixture of monoclinic and “tetragonal” ZrO2; the Raman results indicate the “tetragonal” ZrO2 has a high crystal symmetry or nearly cubic structure.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3