Adhesion of Reactive Ion Implanted Copper Films on Al2O3 and SiO2

Author:

Madakson P. B.,Baglin J. E. E.

Abstract

ABSTRACTImplantation of reactive ions at the Cu-Al2O3 or Cu-SiO2 interface has been explored as a means of producing adhesion of thin copper films on these otherwise inert substrates. The process may promote complex chemical bonding at the interface due to the presence of a reactive implanted species; it may also enhance adhesion by interface layer mixing. Thin copper films (400–800Å) were deposited on fused quartz or sapphire substrates. After implantation and, in some cases, heat treatment thick Cu stripes were added to enable peel testing of adhesion strength. The reactive ion species implanted were oxygen (100 keV), or titanium (120 keV) or chromium (80 or 160 keV), to doses ranging from 1015 to 1017 ions/cm2. In each case, the energy was chosen to place the reactive implant at the interface region. For comparison with simple ion beam mixing, a similar set of samples was implanted with krypton ions at 2 MeV to doses of 1 or 3.6 × 1016 ion/cm2. The peel strength was found to be about 0.5 gm/mm for the unimplanted Cu-sapphire samples; 1.3 gm/mm for those implanted with oxygen; 18 gm/mm for those implanted with krypton; 90 gm/mm for those implanted with chromium; and more than 200 gm/mm for the titanium implanted samples. No significant increase in adhesion was achieved for the implanted Cu-quartz samples, except for the titanium implant, which gave an average peel strength of 66 gm/mm after anneal for the dose of 5 × 1016 Ti+/cm2. Studies of the interfaces and of the peeled surfaces were made, using RBS. Changes in both chemical bonding and interface morphology appear to contribute to the phenomena of enhanced adhesion.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3