In-Situ Spectroscopy of Ion-Induced Photon Emission During Metal Nanoparticle Formation in Silica Glass with High-Flux Cu Implantation

Author:

Lay Thi Thi,Amekura H.,Takeda Y.,Kishimoto N.

Abstract

ABSTRACTIon-induced photon emission from a silica glass irradiated with high-flux Cu ions was measured in a wavelength range from 450 nm to 800 nm, while nanoyarticles spontaneously formed in the silica glass. Current density was varied up to 100 µA/cm2 at a constant total dose of 3×106ions/cm2. The photon emission primarily arose from the vicinity of the substrate surface and consisted of sharp peaks due to neutral and singly-ionized species, Cu(I), Cu(II) and Si(II) ions, as well as a broad-band background. Intensity of Si(II) and Cu(I) increased with increasing current density. On the other hand, Cu(II) did not show a monotonic increase, decreasing around 100 µA/cm2. Measurements of in-situ EDX and ex-situ RBS were also conducted to study the relevant mechanisms. The ion-induced photon emission was attributed to recombination processes of sputtered ions and electrons in the plasma, induced by the high-flux Cu beam.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3