A comparative study on as-deposited and in situ oxidized ZnO/diamondlike carbon (DLC) nanocomposite by pulsed laser deposition technique

Author:

Foong Yuan M.,Koh Angel T.T.,Hsieh Jovan,Chua Daniel H.C.

Abstract

As-deposited ZnO/diamondlike carbon (DLC) was prepared using the laser ablation technique on ZnO/C targets, and in situ oxidized ZnO/DLC was prepared by using the same technique, but with the presence of oxygen on Zn/C targets. Transmission electron microscopy showed that ZnO/DLC films were obtainable by using both methods, but only in situ oxidized ZnO/DLC films showed the ultraviolet absorption at ˜370 nm. In situ oxidized films are highly sp3-bonded and rougher than as-deposited films, but as-deposited films are mechanically harder, stiffer, and have higher adhesion strength than in situ oxidized films. X-ray photoelectron spectroscopy revealed that a lower fraction of SiC, but a higher fraction of sp3 bonding was formed in the in situ oxidized ZnO/DLC. This hinted that the presence of oxygen might have scattered the plume’s expansion and reduced the energy possessed by the ions, thus reducing the graphitization and the formation of SiC in DLC matrix. Hence, by altering the deposition mechanism during laser ablation, ZnO/DLC films with modified material properties can be tailored.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3