Author:
Herrmann Mathias,Shen Zhijian,Schulz Ingrid,Hu Jianfeng,Jancar Bostjan
Abstract
The densification behaviors of two silicon nitride nanopowder mixtures based respectively on α-Si3N4 and β-Si3N4 as the major phase constituent were studied by spark plasma sintering. Sintering conditions were established where a low viscous liquid not in equilibrium with the main crystalline constituent(s) stimulated the grain sliding yet did not activate the reprecipitation mechanism that unavoidably yields grain growth. By this way of dynamic grain sliding full densification of silicon nitride nanoceramics was achieved with no noticeable involvement of α- to β-Si3N4 phase transformation and grain growth. This processing principle opens the way toward flexible and precise tailoring of the microstructures and properties of Si3N4 ceramics. The obtained silicon nitride nanoceramics showed improved wear resistance, particularly under higher Hertzian stresses.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献