In situ methods to explore microstructure evolution in chemically derived oxide thin films

Author:

Aygün Seymen M.,Daniels Patrick,Borland William J.,Maria Jon-Paul

Abstract

In situ residual gas analyzer techniques were used to identify process-property relationships that regulate microstructure evolution in chemical solution-deposited BaTiO3 films. In situ analysis of furnace exhaust gasses enabled quantitative exploration of thermolysis and crystallization reactions and an ability to identify processing parameters that influence the temperature ranges over which they occur. The atmospheric analysis was instrumental in identifying heat treatments that produced optimally consolidated precursor gels that crystallized into BaTiO3 layers with optimized structure and properties. Slow ramp rates resulted in higher porosity, larger grain size, and a dramatic drop in the capacitor yield. Fast ramp rates produced similar trends; however, the mechanisms were distinct. The effects of oxygen partial pressure were also explored. BaTiO3 grain size increased with increasing pO2, whereas there was no appreciable influence on density and capacitor yield. Optimal firing parameters, i.e., 20 °C/min ramp rate at a pO2 of 10−13 atm, were identified as those that produced an overlap in the temperature ranges of thermolysis and crystallization reactions and thus a precursor gel with a density and compliance that supports crystallization and densification while tolerating the associated volume contraction. This in situ approach to analyze downstream furnace gas is shown to be a generically applicable means to understand synthesis methods that are complicated by simultaneous mechanisms of precursor decomposition, extraction of volatile components, and crystallization.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3