Abstract
Temperature dependence ofin situfiber strength, effective interface shear stress, Young's modulus of matrix, and matrix fracture energy in a polymer-infiltrationpyrolysis (PIP)-processed two-dimensional plain-woven fabric carbon-coated Nicalon™ SiC fiber-reinforced SiC matrix composite was studied through a tensile test in air at 298 (room temperature), 800, and 1200 K.In situfiber strength and effective interface shear stress were determined by fracture mirror size and fiber pullout length measurements, respectively. The fiber strength was insensitive to test temperature up to 800 K but dropped significantly at 1200 K. Conversely, the interface shear stress showed a strong temperature dependence, decreasing at 800 K and drastically increasing at 1200 K. The temperature dependence of both values was reasonably explained. Temperature dependence of Young's modulus of matrix was derived from Young's modulus of the composite and fiber and ranged from ≈40 to ≈38 GPa. Matrix fracture energy was also determined from the transverse matrix cracking stress and ranged from ≈16 to ≈5.5 J/m2. Both Young's modulus of matrix and the matrix fracture energy showed only slight temperature dependence up to 800 K; however, both values decreased significantly at 1200 K.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献