Influence of Mechanical Pressure and Temperature on the Chemical Interaction Between Steel and Silicon Nitride Ceramics

Author:

Kalin M.,Vižintin J.,Vleugels J.,Van Der Biest O.

Abstract

The chemical interaction between a Si3N4ceramic, with Al2O3and MgO sintering additives, and DIN 100Cr6 steel was studied by means of static interaction couple experiments between 500 and 1200 °C. At 500 °C, the ceramic was chemically stable in contact with the steel. In the temperature range between 700 and 1100 °C, the silicon nitride dissociated in contact with the steel. The Si dissolved and diffused into the steel, whereas a nitrogen pressure built up in the micropores at the interface, limiting and inhibiting the reaction rate. The strength of the obtained interfacial bond was too low to withstand the residual stresses formed during cooling, and therefore, the interaction couples fell apart during cooling. Above 1100 °C, the nitrogen also dissolved and diffused into the steel, enhancing the overall rate of interaction. A strong interface was formed, resulting in a well-defined interaction layer on the ceramic side of the interaction couple. The mechanical pressures on the interaction couples were adjusted to study the influence of plastic deformation of the steel on the chemical interaction. Higher contact pressures resulted in more homogeneous and uniform interaction layers. The reactivity of plastically and elastically deforming steel, however, was found to be the same.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3