Creep-controlled Diffusional Hillock Formation in Blanket Aluminum Thin Films as a Mechanism of Stress Relaxation

Author:

Kim Deok-Kee,Nix William D.,Deal Michael D.,Plummer James D.

Abstract

Hillock formation, a stress-induced diffusional relaxation process, was studied in sputter-deposited Al films. The grain sizes in these films were small compared to those in other sputter-deposited Al films, and impurities (O, Ti, W) were incorporated during the preparation of the films. Stress and hardness measurements both indicate that the Al films were strengthened by the small grain size and incorporated impurities. We observed a new type of hillock in these Al thin films after annealing for 2 h at 450 °C in a forming gas ambient. The hillocks were composed of large Al grains created between the substrate and the original Al film with its columnar grain structure, apparently by diffusion from the surrounding area. By modifying the boundary conditions of Chaudhari's hillock formation model [P. Chaudhari, J. Appl. Phy. 45, 4339 (1974)], we have created a new model that can describe the experimentally observed hillocks. Our model seems to explain the experimentally observed abnormal hillock formation and may be applied to other types of hillock formation using different creep laws.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference17 articles.

1. 8. Zielinski E.M. , Ph.D. Dissertation, Standard University, Stanford, CA (1995).

2. The effect of surface aluminum oxide films on thermally induced hillock formation

3. Hillock growth in thin films

4. A study of hillock formation on AlTa alloy films for interconnections of TFT-LCDs

5. 12. Venkatraman R. , Ph.D. Dissertation, Stanford University, Stanford, CA (1992).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3