Author:
Kuehn K. E.,Sriram D.,Bayya S. S.,Simmins J. J.,Snyder R. L.
Abstract
The ferrite with composition Cu0.5Fe2.5O4 was heat treated in air and in reducing atmospheres to different temperatures within the solid solution region confirmed by dynamic high-temperautre x-ray characterization. The samples were quenched in oil and air, and lattice parameter, Curie temperature, and saturation magnetization measurements were completed. The magnetization measurements for these samples showed a maximum 4πMs of 0.7729 and 0.5426 T at 10 and 300 K, respectively. The cationic distribution based on the low-temperature 4πMs measurements is (Cu+0.24Fe3+0.76)A[Cu+0.26Fe3+1.74]BO4 → 4.9 µ B. X-ray-pure Cu0.5Fe2.5O4 samples were also synthesized by slow cooling from the formation temperature to 900 °C in a reducing atmosphere. A temperature–PO2 diagram for the stability of Cu0.5Fe2.5O4 under the conditions of the experiment was determined. Low-temperature 4πMs measurements did not indicate an increase in the Cu+ A site occupancy for the samples cooled to 900 °C in a reducing environment above those samples that were quenched from high temperature. Curie temperatures for all Cu0.5Fe2.5O4 samples ranged from 348 to 369 °C. Lithium additions (0.1 mol/unit formula) to copper ferrite Li0.1Cu0.4Fe2.5O4 decreased the room-temperature 4πMs values to 0.5234 T with a corresponding decrease in the 10 K measurements to 0.7047 T. From the low-temperature magnetization measurements, the distribution was (Cu+0.15Fe3+0.85)A[Cu+0.25Li+0.1Fe3+1.65]BO4 → 4.48 µ B.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献