Effect of the Pretreatment Step Condition in the Growth Process of the Si Melt Method on the Size of β–Si3N4 Single Crystals

Author:

Ye Jiping,Furuya Kenji,Matsuo Kazuo,Okamura Takeo,Munakata Fumio,Akimune Yoshio

Abstract

Two kinds of obviously different-sized –Si3N4 whiskers were grown from silicon melt with different pretreatment vacuum conditions. Their growth interface structures were studied in a cross-section view from micro-areas to macro-areas by combination of micro-area state analysis with chemical shift mapping of Si Kβ bands using electron probe microanalysis. The one pretreated under the lower vacuum condition with a rotary pump was 10–20 μm in diameter and hundreds of micrometers in length, and another pretreated under the higher vacuum condition with a diffusion pump was 0.1–0.2 mm in diameter and 2–5 mm in length. The small Si3N4 whiskers were grown from the surface of the SiC particles within the Si melt. The large Si3N4 whiskers were grown from the surface of Si3N4 crucible. On the basis of these results, their growth mechanisms are discussed from the view of the nucleation sites, impurity source, and thermodynamic stability of the SiC particles. Compared with the Si3N4 grains, the SiC particles influenced the nucleation deeply and caused the process to grow small-sized crystals. Preventing the carbon impurities into the Si melt from forming the SiC particles in the pretreatment process was one effective way to grow the large-sized β–Si3N4 single crystals.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3