Investigation on Structure Transition of Fullerene During Mechanical Alloying and Subsequent Treatments

Author:

Liu Z. G.,Ohi H.,Masuyama K.,Tsuchiya K.,Umemoto M.

Abstract

Mechanical milling of fullerene (soot containing C60/C70 fullerenes in a 8:2 molar ratio) was investigated through various characterization methods. It was found that mechanical milling would not destroy the molecular structure of fullerene C60 (C70), while the long-range order of the face-centered-cubic crystalline structure was easily modified and transformed into amorphous phase, a mixture of fullerene C60 (C70) polymers and monomers. Differential scanning calorimetry analysis revealed a recovery of polymers to pristine fullerene molecules at 678 K, which is much higher than the reported depolymerization temperature of fullerene polymers induced by photo irradiation and by high-pressure–temperature processes. It is suggested that the contaminated Fe acts as a catalyst in the polymerization process.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nitrogen Physisorption on Defective C60;The Journal of Physical Chemistry B;2002-08-23

2. Mechanical milling of fullerene with carbide forming elements;Journal of Materials Science;2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3