Author:
Collins David E.,Slamovich Elliott B.
Abstract
Thin-film composites of BaTiO3 particles in a polymeric matrix were processed by reacting films of a titanium alkoxide, mixed with a polybutadiene-polystyrene triblock copolymer, in aqueous solutions of 1.0 M Ba(OH)2 at temperatures ranging from 60 to 90 °. After reaction, the composite films displayed distinct surface and subsurface morphologies. The film surface consisted of a continuous layer of BaTiO3 grains, the film grain size decreasing from 180 to 60 nm as the reaction temperature increased from 60 to 90 °. The subsurface growth of BaTiO3 depended on the presence of a percolating network of hydrolyzed titanium alkoxide, which enabled the reaction solution to permeate throughout the thin film. The resulting subsurface film morphology was composed of segregated regions of BaTiO3 particles dispersed throughout the polymeric matrix. The growth of subsurface BaTiO3 particles appeared to be constrained by the polymer matrix, resulting in a subsurface particle size of approximately 5 to 10 nm that was independent of the hydrothermal processing temperature. The reacted films displayed a dielectric constant ranging from 10 to 15 at room temperature and a frequency of 10 kHz.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献