Semi-coherent zirconia inclusions in a ceramic matrix

Author:

Guinebretière R.,Oudjedi Z.,Soulestin B.,Dauger A.

Abstract

Nanocomposite ceramic materials were fabricated by conventional sintering of composite powders obtained by sol-gel coating of submicron powders. The microstructure of these MgAl2O4–ZrO2 materials was studied by transmission electron microscopy. All zirconia grains were in the tetragonal phase. In addition, the intragranular zirconia crystals exhibited heteroepitaxial orientation relationships with the surrounding spinel grains, (hkl)zirconia//(hkl)spinel. Semi-coherent interfaces along {111} planes were observed by high-resolution microscopy. The transformation toward the orthorhombic or the monoclinic phase retained the epitaxial relationships as far as possible. The presence of such heteroepitaxial intragranular crystals in sintered ceramic materials, which did not involve a melting stage, was attributed to the specificity of the material preparation process.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3