Scanning Probe Microscopy (SPM) for the Investigation of Local Electrical Properties of High-K Dielectric/Ferroelectric Films

Author:

Landau S.A.,Weiß P.-A.,Junghans N.,Kolbesen B.O.,Adderton D.,Schindler G.,Hartner W.,Hintermaier F.,Dehm C.,Mazuré C.

Abstract

ABSTRACTThin films of high-k dielectric/ferroelectric materials such as BaxSr1−xTiO3 (BST), PbZrxTi1−xO3 (PZT) and SrBi2Ta2O9 (SBT) are currently investigated for integration into high-density CMOS technology. Characterization of these materials by SPM techniques combines imaging of the morphology and microstructure of these films and recording of various electrical parameters at the same local area. Using commercial equipment we have investigated electrical properties such as polarization and leakage current behavior of MOD/MOCVD SBT by applying electrostatic force microscopy (EFM) and conducting atomic force microscopy (CAFM). After applying bias voltages of a few volts across the SBT films between the scanning tip and the lower electrode completely polarized/reverse polarized SBT layers could be observed by EFM. Even single crystallite polarization was imaged. However, unexpectedly some films showed incomplete polarization, which may be caused by local electrical field effects. Images taken by C-AFM displayed enhancement of leakage currents in grain boundary regions, in particular at depressions between adjacent crystallites. The results achieved demonstrate that SPM techniques operated in a variety of imaging and measuring modes, provide a tremendous potential in the elucidation of the microscopic properties of high-k materials.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3