Kinetic and characterization studies of the formation of barium monomolybdate in equimolar powder mixture of BaCO3 and MoO3

Author:

Al-Hajji Latifa A.,Hasan Muhammad A.,Zaki Mohamed I.

Abstract

The formation of barium monomolybdate (BaMoO4) in inequimolar powder mixtures of BaCO3 and MoO3 was examined under isothermal and nonisothermal conditions upon heating in air at 25–1200 °C, using thermogravimetry. Concurrence of the observed mass loss (due to the release of CO2) to the occurrence of the formation reaction was evident. Accordingly, the extent of reaction (x) was determined as a function of time (t) or temperature (T). The x-t and x-T data thus obtained were processed using a well-established mathematical apparatus and methods to characterize the nature of the reaction rate-determining step and derive isothermal and nonisothermal kinetic parameters (rate constant, frequency factor, reaction order, and activation energy). Moreover, the reaction mixture quenched at various temperatures (450–575 °C) in the reaction course was analyzed by various spectroscopic (x-ray diffractometry, infrared spectroscopy, and laser Raman spectroscopy) and microscopic (scanning electron microscopy and x-ray energy dispersive spectroscopy) techniques for material characterization. The results obtained indicated that the reaction rate may be controlled by unidirectional diffusion of MoO3 species through the product layer (BaMoO4), which was implied to form on the barium carbonate particles. The nonisothermally determined activation energy (156 kJ/mol) was found to be close to the isothermally determined one (164–166 kJ/mol)

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3