Author:
Lin C. H.,Chu J. P.,Mahalingam T.,Lin T. N.,Wang S. F.
Abstract
This paper describes studies on the thermal annealing behavior of Cu films with 2.3 at.% W deposited on Si substrates. The magnetron cosputtered Cu films with insoluble W were vacuum annealed at temperatures ranging from 200 to 800 °C. Twins were observed in focused ion beam and transmission electron microscopy images of as-deposited and 400 °C annealed pure Cu film, and these twins were attributed to the intrinsic low stacking fault energy. Twins in pure Cu film may provide an additional diffusion path during annealing for copper silicide formation. The beneficial effect of W on the thermal stability of Cu film was supported by the following observations: (i) x-ray diffraction studies show that Cu4Si was formed at 530 °C in Cu–W film, whereas pure Cu film exhibited Cu4Si growth at 400 °C; (ii) shallow diffusion profiles for Cu into Si in Cu–W film through secondary ion mass spectroscopy analyses, and the high activation energy needed for the copper silicide formation from the differential scanning calorimetry study; (iii) addition of W in Cu film increases the stacking fault energy and results in a low twin density.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献