Canonical-glass-like behavior of the polycrystalline relaxor ferroelectric (1–x)PbMg1/3Nb2/3O3–xPbZrO3: Heat-capacity study

Author:

Singh Gurvinderjit,Tiwari V.S.,Kumar Arun,Wadhawan V.K.

Abstract

A solid solution of lead magnesium niobate (PMN), a relaxor ferroelectric, with lead zirconate (PZ), an antiferroelectric, gives rise to a system that behaves like a relaxor ferroelectric for lower concentrations of PZ, and like a normal ferroelectric above 50% substitution by PZ. This paper reports the heat-capacity behavior of (1 –x)PMN–xPZ for the composition rangex= 0.30 to 0.95 and temperature range 300–600 K. It was observed that, although the atomic structure of the material is basically crystalline throughout, with sharp x-ray diffraction peaks, the crossover from normal–ferroelectric behavior to relaxor–ferroelectric behavior (on decreasingx) is accompanied by a matching crossover from crystalline behavior to glassy behavior, as exhibited in the heat-capacity plots. In other words, the heat-capacity curves for the relaxor compositions bear resemblance to those observed for canonical or conventional glasses, with the glass-transition temperature and the continuous step in specific heat changing gradually as a function of the composition parameterx. However, not all properties match those for canonical glasses. For example, soaking for 24 h at a temperature or 10 to 20 K below the mean glass-transition temperature does not raise the specific heat to a value nearly equal to the value in the unfrozen state. Similarly, the glass-transition temperature (for 0.7PMN–0.3PZ) increases, though only marginally (from 337 K to 343 K), when the rate of heating across the transition is increased by a factor of 50 (from 0.1 K per minute to 5 K per min.). Further, the temperature interval ΔT over which most of the glass transition occurs in the relaxor ferroelectric is typically as large as 30–40 K, compared to only about 10 K for canonical glasses.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3