Mechanical property evaluation through sharp indentations in elastoplastic and fully plastic contact regimes

Author:

Mata M.,Alcalá J.

Abstract

Following the finite element simulations in our earlier work about the contact deformation regimes, mathematical formulations were derived to correlate hardness and the amount of pileup and sinking-in phenomena around sharp indenters with uniaxial mechanical properties. The formulations are applicable regardless of the deformation regime ruling the contact response of a strain-hardening solid. A methodology was devised where the use of these formulations in mechanical property assessments from indentation experiments was demonstrated. The current results make contact with existing methodologies using the II-theorem in functional analysis to extract uniaxial properties from instrumented indentation load depth of penetration curves. It is argued that since surface deformation is an essential feature of the contact response, it enters directly or indirectly in such existing methodologies. The paper considers how independent knowledge of surface deformation can be used to guide mechanical property assessments from load-depth of penetration curves. A discussion on the uniqueness of mechanical characterizations through indentation experiments is also provided.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3