Relationship between nanohardness and microstructures in high-purity Fe–C as-quenched and quench-tempered martensite

Author:

Ohmura T.,Hara T.,Tsuzaki K.

Abstract

The relationship between the nanohardness and the microstructures in the Fe–C martensite was studied to understand the contributions of the matrix and the grain boundary to the macroscopic strength. As-quenched martensite was examined for five kinds of Fe–C alloys with various carbon contents in the range of 0.1–0.8 mass%, while quench-tempered martensite was investigated for an Fe–0.4% C alloy. The ratio of the nanohardness to the macrohardnessHn/Hvwas much smaller for the Fe–C martensite than those for the single crystals, indicating that there is a significant grain-boundary effect for the martensite. The ratioHn/Hvof the as-quenched martensite decreased with an increase in the carbon content since the size of the block structure decreased with increasing carbon content. For the quench-tempered specimens, a significant reduction of the grain-boundary effect occured at the tempering temperature of 723 K. It is mainly due to the depression of the locking parameter caused by the disappearance of the film-like carbides on the boundaries.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3