Determination of the stress-dependent stiffness of plasma-sprayed thermal barrier coatings using depth-sensitive indentation

Author:

Malzbender J.,Steinbrech R. W.

Abstract

The elastic response of atmospheric plasma-sprayed coatings was investigated using Vickers and spherical indenter geometries. In both cases a strong dependency of the stiffness on the applied load (indentation depth) was observed. The stiffness of the coatings decreased with increasing load for a Vickers indenter, whereas it increased for a spherical indenter. This contrary behavior was related to the relative crack density in the deformed volume and to the stress dependence of the stiffness due to crack closure. The effect of annealing on the stiffness was quantified for both tip geometries. The heat treatment yielded additional information on the relationship between the indentation data and the microstructural defects. From the results it was concluded that the stiffness measured using a sharp indenter and small load reflected the elastic behavior of single spraying splats. With the relatively large spherical indenter, the average global stiffness of the thermal barrier coating was measured even at small loads. From the data obtained using the spherical indenter, a compressive stress–strain curve was suggested. Furthermore, values of the apparent crack density and yield strength were determined from the indentation tests.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3