Abstract
New Cu-based bulk glassy alloys with large supercooled liquid regions and high mechanical strength were formed in Cu–Hf–Al ternary systems. The large supercooled liquid region exceeding 70 K was obtained in the composition range of 40 at.% Hf at 2.5% Al, 37.5–50% Hf at 5% Al, and 45% Hf at 7.5% Al. The largest supercooled liquid region ΔTx(= Tx – Tg) was 91 K for Cu50Hf45Al5 alloy, and the highest reduced glass-transition temperature was 0.63 for Cu50Hf42.5Al7.5 and Cu52.5Hf40Al7.5 alloys. The alloys with large ΔTx values above 50 K were formed into bulk glassy rods with diameters up to 3 mm by copper mold casting, and the glassy alloy rods exhibited high compressive fracture strength of 2260 to 2370 MPa and Young's modulus of 121 to 128 GPa combined with elastic elongation of 1.9% to 2.0% and plastic elongation of 0.2% to 0.6%. No bulk glassy alloys were formed in the Cu–Hf binary system by copper mold casting, and, hence, the addition of 2.5% to 7.5% Al to Cu–Hf alloys was very effective for increasing glass-forming ability as well as the stabilization of supercooled liquid. The effectiveness can be interpreted on the basis of the concept of the formation of a unique glassy structure in special multicomponent alloys with the three component rules.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献