Formation and mechanical properties of Cu–Hf–Al bulk glassy alloys with a large supercooled liquid region of over 90 K

Author:

Inoue Akihisa,Zhang Wei

Abstract

New Cu-based bulk glassy alloys with large supercooled liquid regions and high mechanical strength were formed in Cu–Hf–Al ternary systems. The large supercooled liquid region exceeding 70 K was obtained in the composition range of 40 at.% Hf at 2.5% Al, 37.5–50% Hf at 5% Al, and 45% Hf at 7.5% Al. The largest supercooled liquid region ΔTx(= TxTg) was 91 K for Cu50Hf45Al5 alloy, and the highest reduced glass-transition temperature was 0.63 for Cu50Hf42.5Al7.5 and Cu52.5Hf40Al7.5 alloys. The alloys with large ΔTx values above 50 K were formed into bulk glassy rods with diameters up to 3 mm by copper mold casting, and the glassy alloy rods exhibited high compressive fracture strength of 2260 to 2370 MPa and Young's modulus of 121 to 128 GPa combined with elastic elongation of 1.9% to 2.0% and plastic elongation of 0.2% to 0.6%. No bulk glassy alloys were formed in the Cu–Hf binary system by copper mold casting, and, hence, the addition of 2.5% to 7.5% Al to Cu–Hf alloys was very effective for increasing glass-forming ability as well as the stabilization of supercooled liquid. The effectiveness can be interpreted on the basis of the concept of the formation of a unique glassy structure in special multicomponent alloys with the three component rules.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3