Author:
Knudsen Jesper,Woodward D.I.,Reaney Ian M.
Abstract
Transmission electron microscopy, x-ray diffraction, relative permittivity as a function of temperature, and polarization versus field loops were used to study the antiferroelectric/ferroelectric (AFE/FE) phase boundary in Pb1–1.5xLaxZr0.9Ti0.1O3 (PLZT, 100x/90/10) ceramics. X-ray diffraction and electrical measurements indicated a FE rhombohedral (R) to AFE tetragonal (T) phase transition between PLZT 2/90/10 and 4/90/10. Both phases exhibited superstructure reflections in electron-diffraction patterns at ½{hkl} positions consistent with rotations of the octahedra in antiphase. Previously, neutron diffraction suggested that the FER has an a−a−a− tilt system (Glazer notation), in agreement with its macroscopic symmetry. By analogy, it is proposed that the AFET phase has an a0a0c− tilt system. The AFE phase was also characterized by incommensurate superstructure along pseudocubic 〈110〉p directions, whereas the FE phase had extra commensurate superlattice reflections at 1/2{hk0}p positions. 1/2{hk0}p reflections are forbidden in both tilt systems, but their presence is explained by Pb ion displacements averaged along 〈111〉 but with short coherence antiparallel components along 〈110〉 directions. The antiparallel Pb displacements are coupled to an a−b−b− (a ≈ b) monoclinic tilt system in the vicinity of the AFE/FE boundary.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献