Linear strain hardening in elastoplastic indentation contact

Author:

Sakai M.,Akatsu T.,Numata S.,Matsuda K.

Abstract

Finite-element analyses for elastoplastic cone indentations were conducted in which the effect of linear strain hardening on indentation behavior was intensively examined in relation to the influences of the frictional coefficient (μ) at the indenter/material contact interface and of the inclined face angle (β) of the cone indenter. A novel procedure of “graphical superposition” was proposed to determine the representative yield stress YR. It was confirmed that the concept of YR applied to elastic-perfectlyplastic solids is sufficient enough for describing the indentation behavior of strainhardening elastoplastic solids. The representative plastic strain of εR (plastic) ≈ 0.22 tan β, at which YR is prescribed, is applicable to the strain-hardening elastoplastic solids, affording a quantitative relationship of YR = Y + ε;R (plastic) × EP in terms of the strain-hardening modulus EP. The true hardness H as a measure for plasticity is estimated from the Meyer hardness HM and then successfully related to the yield stress Y as H = C(β,μ) × Y for elastic-perfectly-plastic solids and as H = C(β,μ) × YR for strain-hardening solids, by the use of a β- and μ-dependent constraint factor C(β,μ) ranging from 2.6 to 3.2.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3