Experimental Assessment of Strain Gradient Plasticity

Author:

Barney Monica M.,Campbell Geoffrey H.,Stölken James S.,Schwartz Adam J.,Plitzko Jürgen M.,King Wayne E.,Morris John W.

Abstract

AbstractClassical plasticity theories generally assume that the stress at a point is a function of strain at that point only. However, when gradients in strain become significant, this localization assumption is no longer valid. These conventional models fail to display a ‘size effect’. This effect is seen experimentally when the scale of the phenomenon of interest is on the order of several microns. Under these conditions, strain gradients are of a significant magnitude as compared to the overall strain and must be considered for models to accurately capture observed phenomena.The mechanics community has been actively involved in the development of strain gradient theories for many years. Recently, interest in this area has been rekindled and several new approaches have appeared in the literature. Two different approaches are currently being evaluated. One approach considers strain gradients as internal variables that do not introduce work conjugate higher order stresses. Another approach considers the strain gradients as internal degrees of freedom that requires work conjugate higher order stresses. Experiments are being performed to determine which approach models material behavior accurately with the least amount of complexity. A key difference between the two models considered here is the nature of the assumed boundary conditions at material interfaces. Therefore, we are investigating the deformation behavior of aluminum/sapphire interfaces loaded under simple shear. Samples are fabricated using ultra-high vacuum diffusion bonding. To determine the lattice rotations near the boundary, we are examining the samples with both electron backscatter diffraction methods (EBSD) in the scanning electron microscope and with a variety of diffraction techniques in the transmission electron microscope. The experimentally found boundary conditions shall be subsequently used to determine whether the simpler internal variable model is adequately descriptive or if the greater complexity associated with the internal degree of freedom approach is warranted.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3