Abstract
ABSTRACTThis paper presents the self-consistent tight-binding method of new generation which, unlike other tight-binding methods, allows one to calculate structural energies of multiatomic systems (molecules, clusters, defects in solids) and their spectroscopic energies in the framework of the same computational scheme and with comparable accuracy. Reliability of the method is illustrated considering defect state problems in crystalline and amorphous silicon (electronenhanced- atomic diffusion, metastable defect creation, defects with effective-negative correlation energies, etc.) and comparing obtained results with ab initio calculations and experimental data.
Publisher
Springer Science and Business Media LLC