Electron Beam Activated Diamond Devices

Author:

Lin Shiow-Hwa,Sverdrup Lawrence H.

Abstract

ABSTRACTDiamond's unique properties are ideally suited for high power and high frequency electronic applications. Natural type Ila diamond wafers of various thicknesses and active areas were used to construct several electron beam activated diamond devices. Average voltage gradients in the diamond target on the order of a mega-volt per centimeter were obtained. Possibilities of improving the attainable average voltage gradient are discussed. Electron activation avoids the necessity of semiconducting doping of the active diamond devices. The electron bombardment on diamonds yields a current-voltage characteristics very similar to that of a bipolar transistor. In the experiments discussed here, the diamond conduction to bombarding current gain ranged from 1,000 to 3,000 depending upon the diamond thickness and the bombarding electron energy. The bombarded diamond on-state resistance is consistent with a simple carrier drift and space charge model. Maximum conduction current density achieved in diamond is 19kA/cm2. High power switching of greater than 25kW with less than 100ns risetime is demonstrated. An electron beam bombarded millimeter wave diamond device has generated more than one watt of power.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3