Modeling of Device Characteristics as Function of Ti Salicide Rapid Thermal Processing Parameters for Deep-Sub-Micron CMOS Technologies

Author:

Kittl J. A.,Prinslow D. A.,Misium G.,Pas M. F.

Abstract

AbstractRapid thermal processing is widely applied in self-aligned Ti silicide processes for deep-submicron devices. We investigated and modeled the effects of rapid thermal processing variables (silicide formation temperature and time, and anneal temperature and time) and Ti thickness on deep-sub-micron device characteristics. The effect of Ti thickness, formation temperature and time on diode leakage and bridging due to silicide lateral growth, and its correlation to silicide thickness was analyzed; as well as the effects of these and the anneal variables on n+ gate sheet resistance, silicide to source/drain contact resistance and transistor source-drain series resistance. An expression for n+ gate sheet resistance is given, as function of anneal temperature and time, silicide thickness, linewidth and TiSi2 C49 grain size after formation, based on a nucleation density model in agreement with measurements of TiSi2 C49 to C54 transformation kinetics. The tradeoffs and process window limits are discussed, as well as trends observed when scaling down lateral and vertical dimensions. We show that for advanced technologies, the scaling of silicide thickness and linewidth narrows the process window between full C49 to C54 transformation and agglomeration temperatures. Due to the high activation energy of the C49 to C54 transformation, a process window for low sheet resistance exists only for high temperature-short time processes.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3