Measurement of Quasi-Fermi Levels in Quantum Well Lasers

Author:

Therrien J.,Mil'shtein S.,Chin A.

Abstract

AbstractHeterojunction Quantum Well Lasers were tested under forward and reverse bias, by Scanning Electron Microscopy (SEM) working in Differential Voltage Contrast(DVC) mode. DVC utilizes the impact of electrical potential across a device on the emission of secondary electrons. DVC consists of storing and subtracting two digitized images of the tested device under zero bias and in an operational regime. Calibration of the resultant image provides for quantitative measurements of the potential across the device. The question of whether the DVC technique measures the electron affinity of a material or its work function or the thermodynamic potential has been addressed in recent papers, however questions remained regarding discrepancies between the expected Quasi Fermi Energy (QFE) and the measured values. The experimental part of our work concentrated on taking (QFE) profiles by DVC across a single quantum well laser operating in inverse population, threshold, and high power emission modes of photoemission. The intensity was measured by a calibrated photodetector aligned with the laser in the SEM chamber. The cleaved and yet operational lasers have as a central part a layer of In0.2Ga0.8As 600nm thick between two undoped layers of Al0.3Ga0.7As 0.1 μm thick each with cladding layer of n-type Al0.6Ga0.4As on one side and a similar p-type layer on the other. The shape of QFE indicated that eletrons and photons contribute to total energy over the intrinsic area. This QFE profiling across the laser reveals areas of electron and photon confinement.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference5 articles.

1. 3. Mil'shtein S. , Therrien J. M. , Chin A. K. , and Zarrabi J. H. , Superlatt. and Microstruct. (in press)

2. Beam testing of the electrical field in semiconductor devices

3. 5. Mil'shtein S. and Thenrien J. , pat. applic.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3