Deposition of Ceramic Films by A Novel Pulsed-Gas Mocvd Technique

Author:

Aitchison Kenneth A.,Barrie James D.,Ciofalo Joseph

Abstract

ABSTRACTMetal-Organic Chemical Vapor Deposition (MOCVD) is a versatile technique for the deposition of thin films of metals, semiconductors and ceramics. Commonly used hot wall flow-reactor designs suffer from a number of limitations. Chemical processes occurring in these reactors typically include a combination of homogeneous (gas-phase) and heterogeneous (gas-surface) reactions. These complex conditions are difficult to model and are poorly understood. In addition, flow reactors use large quantities of expensive precursor materials and are not well suited to the formation of abrupt interfaces. We report here a novel MOCVD technique which addresses these problems and enables a more thorough mechanistic understanding of the heterogeneous decomposition pathways of metal-organic compounds. This technique, the low-pressure pulsed gas method, has been demonstrated to provide high deposition rates with excellent control over film thickness. The deposition conditions effectively eliminate homogeneous processes allowing surface-mediated reactions to dominate. This decoupling of gas-phase chemistry from film deposition allows a better understanding of reaction mechanisms and provides better control over film growth. Both single metal oxides and binary oxide systems have been investigated on a variety of substrate materials. Effects of precursor chemistry, substrate surface, temperature and pressure on film composition and morphology will be discussed.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3