Solute-Driven Melting Kinetics in the Sn-Bi System

Author:

Yasensky David,Abbaschian Reza

Abstract

AbstractThe goal of the present study was to gain insight into the mechanisms and behavior of solute driven melting processes. Solute-driven melting refers to melting whose driving force originates from a change in composition, i.e., solute content, rather than a change in temperature. This kind of melting has been known to cause casting defects in superalloys and other metals.An experimental apparatus was designed and a series of experiments were carried out on Sn-Bi alloys. The apparatus involved diffusing Bi into solid Sn cast inside a glass capillary to cause it to melt. The Bi source was an enriched liquid Sn-Bi alloy contained in a reservoir. The Sn in the capillary was kept at a constant temperature below its melting point so that the melting was caused by the increasing Bi composition. The progression of the interface was monitored by quenching the process at various times for the same conditions.The apparatus was successful in delivering data for the displacement of the interface against time. It was found that interface position was approximately proportional to the square root of time, and so the process may be diffusion controlled as conjectured in previous literature. Rough calculations are made relating the temperature and supersaturation to the displacement coefficient A in the equation z = At½ where z is displacement and t is time. By comparing data at different temperatures with the same supersaturation, an activation energy Q of ~60,000J/mol is calculated. This value is between the activations energies for diffusion of Bi through the liquid and the solid. Suggestions for modification of the apparatus to include in-situ interface monitoring are made.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3