Electrical Characterization of Blue Light Emitting Diodes as a Function of Temperature

Author:

Madhu Murthy,Kamto Tegueu Alphonse Marie,Awaah Michael,Wang Dake,Park Minseo,Walker Frederick J.,Kumar Das Kalyan

Abstract

AbstractBlue light emitting diodes (LEDs) based on an AlGaN/GaN/AlGaN double heterojunction structure were electrically characterized as a function of temperature. Current-voltage (I-V), capacitance-voltage (C-V) and reverse recovery storage time measurements were conducted at temperatures in the range between -8° and 75° C. Capacitance-voltage measurements as a function frequency (20 Hz – 1 MHz) and electroluminescence study at room temperature were also performed. It was observed that the diode turn-on voltage decreased with increasing temperature, however, reverse leakage currents monitored at -1, -5 and -10 V showed only a slight increase with increasing temperature. The concentration of deep states and their position in the bandgap, as extracted from logarithmic plots of the forward characteristics, were not influenced by the measurement temperature. Recombination lifetimes, as obtained from experimentally determined reverse recovery storage times, remained constant over the range of temperature considered. A higher value of diode capacitance was observed at low measurement frequencies (20 Hz – 1 kHz), gradually dropping to a lower value over a frequency range between (1 kHz – 100 kHz) and remained constant from 100 kHz to 1 MHz. A loss peak centered about 10 kHz was observed in the corresponding plot of gm as a function of frequency, f. The position of the peak in the gm - frequency (f) plot and dC/dω(for f in the range 1 kHz – 100 kHz ), yielded a concentration of deep-states of approximately 2.2 × 1015/cm3, located at 0.39 eV above the valence bandedge.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3