Carrier Recombination, Relaxation, and Transport Dynamics in InN

Author:

Chen Fei,Cartwright Alexander N,Lu Hai,Schaff William J

Abstract

AbstractKnowledge of the carrier recombination, relaxation, and transport processes in InN materials is essential for determining the applicability of this material system in photonic and electronic applications. In this article, we provide a review of time-resolved spectroscopy experimental techniques and our recent results using these techniques to measure transient processes in InN. Specifically, subpicosecond differential transmission experiments were used to determine the carrier recombination lifetime and the carrier thermalization time of InN. In those experiments, we observed a fast initial hot carrier cooling followed by a slower recombination process. At short times after pulsed excitation, modeling of the observed relaxation suggests that the dominant energy relaxation process is longitudinal optical phonon scattering modified by a strong hot phonon effect at room temperature. An inverse proportionality between the carrier lifetime and the free electron concentration was found. This suggests that donor-like defects or impurities may stimulate the formation of non-radiative recombination centers. Furthermore, we report the measurements of in-plane carrier transport and hole mobility of an InN epilayer by time-resolved transient grating spectroscopy using subpicosecond pulses at 800 nm and ∼1900 nm for grating writing and probing, respectively. The ambipolar diffusion coefficient Da = 2.0 cm2/s and hole mobility µh = 39 cm2/Vs at 300 K near the InN surface were determined by monitoring the transient grating kinetics at various grating periods.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3