UO2. Matrix Dissolution Rates and Grain Boundary Inventories of Cs, Sr, and Tc in Spent Lwr Fuel

Author:

Gray W. J.,Strachan D. M.

Abstract

ABSTRACTExperimental methods have been developed for measuring the grain-boundary inventories of radionuclides and for determining whether the UO2 matrix of spent light-water reactor fuel dissolves congruently. Both methods depend upon first separating the fuel into individual grains. With the grain boundaries thus exposed, the associated inventories of radionuclides can be completely dissolved and measured. To determine whether the UO2 matrix of spent fuel dissolves congruently, the fuel grains were placed in a flow-through column and water was pumped through the column at a rate sufficient to maintain the concentration of U in the column effluent far below saturation. Once the grain-boundary material has dissolved, the forward dissolution rate of the UO2 matrix can be measured and, by measuring the concentrations of other radionuclides in the column effluent, the degree of congruency of the dissolution process can be determined. Data obtained to date indicate that the grain-boundary inventories of Cs, Tc, and Sr are approximately equal to gap inventories and that the fractional dissolution rate of Cs from the U02 matrix is approximately equal to that of U, i.e., the Cs and U dissolved nearly congruently. In addition, the data appear to show a gradient in the concentrations of Cs and Sr across the individual UO2 grains.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3