Kinetic Lattice Monte Carlo Simulations of Cascade Aging in Iron and Dilute Iron-Copper Alloys

Author:

Wirth B. D.,Odette G. R.

Abstract

AbstractNeutron hardening and embrittlement of pressure vessel steels is due to a high density of nm scale features, including copper-manganese-nickel rich precipitates and what are generally believed to be defect cluster-solute complexes. It has been postulated that the sub nanometer defect cluster-solute complexes form directly in displacement cascades. Cluster-complexes that are thermally unstable mediate the effect of flux on embrittlement kinetics. Larger cluster-complexes, that are relatively thermally stable for irradiation times up to 1 Gs, cause embrittlement in low copper steels. Robust characterization of these two types of so-called matrix defects has been an elusive goal. In this work, Kinetic Lattice Monte Carlo (KLMC) simulations of the long term evolution of the vacancy-rich cascade core regions were carried out for both pure iron and dilute iron-copper alloys at the nominal irradiation temperature of 563°K up to times when the vacancy clusters completely dissolve. Energetics were based on lattice embedded atom method potentials. Special time scaling and pulse annealing techniques were used to deal with the enormous range of inherent time scales involved, viz., rapid free vacancy jumps to slow emission from large complexes. Three-dimensional clusters rapidly form, containing a wide range of vacancies, as well as copper atoms in alloys. Small complexes are very mobile and growth takes place primarily by coalescence. The vacancy clusters ultimately dissolve at times from less than 0.1 to more than 100 MS. These simulations support the hypotheses that cascade cluster- complexes constitute both thermally stable and unstable matrix defect features.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference16 articles.

1. Interaction of vacancies with impurities in iron

2. SimpleN-body potentials for the noble metals and nickel

3. 9. Wirth B. D. , On the Character of Nano-scale Features in Reactor Pressure Vessel Steels Under Neutron Irradiation, Ph.D. Dissertation, University of California, Santa Barbara (1998).

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3