Author:
Sriprapha Kobsak,Yunaz Ihsanul Afdi,Hiza Shuichi,Ahn Kun Ho,Myong Seung Yeop,Yamada Akira,Konagai Makoto
Abstract
AbstractThe temperature dependence of Si-based thin-film single junction solar cells on the phase of the intrinsic absorber is investigated in order to find the optimal absorber at high operating temperatures. For comparison, hydrogenated amorphous, protocrystalline, and microcrystalline silicon solar cells are fabricated by plasma-enhanced chemical vapor deposition and hot-wired CVD techniques. Photo J-V characteristics are measured using a solar simulator at the ambient temperature range of 25-85°C. It is found that the cells with a higher open-circuit voltage usually show lower temperature-dependent behaviors; the protocrystalline silicon solar cells provide the lowest temperature coefficient of efficiency, while the microcrystalline silicon solar cells are highly sensitive to the temperature. Therefore, protocrystalline silicon solar cells are promising for use in high temperature regions.
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献